Prediction Errors in Nonstationary Autoregressions of Infinite Order
نویسندگان
چکیده
Abstract Assume that observations are generated from a nonstationary autoregressive (AR) processes of infinite order. We adopt a finite-order approximation model to predict future observations and obtain an asymptotic expression for the mean-squared prediction error (MSPE) of the least squares predictor. This expression provides the first exact assessment of the impacts of nonstationarity, model complexity and model misspecification on the corresponding MSPE. It not only provides a deeper understanding of the least squares predictors in nonstationary time series, but also forms the theoretical foundation for a companion paper by the same authors, which obtains asymptotically efficient order selection in nonstationary AR processes of possibly infinite order.
منابع مشابه
Toward optimal multistep forecasts in nonstationary autoregressions (Running title: Forecasting nonstationary autoregressions)
متن کامل
Markovian Processes, Two-Sided Autoregressions and Finite-Sample Inference for Stationary and Nonstationary Autoregressive Processes
In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملOn prediction errors in regression models with nonstationary regressors
Abstract: In this article asymptotic expressions for the final prediction error (FPE) and the accumulated prediction error (APE) of the least squares predictor are obtained in regression models with nonstationary regressors. It is shown that the term of order 1/n in FPE and the term of order log n in APE share the same constant, where n is the sample size. Since the model includes the random wa...
متن کاملAutoregressive Approximations of Multiple Frequency I ( 1 ) Processes ∗
We investigate autoregressive approximations of multiple frequency I(1) processes, of which I(1) processes are a special class. The underlying data generating process is assumed to allow for an infinite order autoregressive representation where the coefficients of the Wold representation of the suitably filtered process satisfy mild summability constraints. An important special case of this pro...
متن کامل